Recent Enhancements to the Los Alamos Isotope Production Facility

Isotopes produced at Los Alamos National Laboratory (LANL) are saving lives, advancing cutting-edge research, and helping to address national security questions. For the past two years LANL’s Accelerator Operations & Technology Division has executed a $6.4M improvement project for the Isotope Production Facility. The goals were to reduce the programmatic risk and enhance facility reliability while at the same time pursuing opportunities to increase general isotope production capacity. This has led to some exciting innovations.

Active and Adjustable Collimator
The collimator is divided into four active-segments with a beam-spill current and temperature measurement for each segment. Furthermore, due to its adjustability (1.4-2.3°) it enables the use of larger diameter targets to increase the production capacity of various radioisotopes at IPF. Devices in the cross section view from left to right: Collimator Actuation System on a slide table, Guard Ring, Fixed Collimator followed by Adjustable Collimator and at the far right the beam window.

New and Improved Beam Diagnostics
Predicts better beam size and position at the target window and target therefore enhancing the reliability of IPF. This is based on our new capabilities: transverse emittance characterization of the beam, the measurement of rastered and unrastered beam profiles (via Harp and Wire Scanner), accurate beam current measurement from 100 nA to 450 µA, time-of-flight energy measurements at the energies of 41, 72 and 100 MeV.

Beam Rastering
Ensure that the beam-power is distributed optimally across the surface of each target which will allow for an increase in isotope production capacity. The new system can provides Control, Run Permit and Fast Protect functionality. Fast Protect turns beam off within 200 µs. The system is able to produce up to ~3 rastered circles of the same size in one macropulse. It is able to adjust on the fly to account for variation in the day-to-day beam spot size by independent adjustment of X and Y amplitude, +/- 10% in one percent step sizes.

*Work supported by the United States Department of Energy, Office of Science, Office of Nuclear Physics, via funding from the Isotope Development and Production for Research and Applications subprogram; ¹ pieck@lanl.gov